Алгебра матриц Аналитическая геометрия Неопределенный интеграл Изменить порядок интегрирования в интеграле Функции нескольких переменных Линейные уравнения Производные ФНП высших порядков Функции комплексной переменной

Решение примерного варианта контрольной работы по математике

Функции нескольких переменных

Задания для подготовки к практическому занятию

Прочитайте §22 лекций (обратите внимание на примеры!) и предложенный пример. Ответьте на вопросы и решите задачи.

Пример.

  Найти область определения функции

В данном случае на область определения функции накладываются ограничения из-за того, что аргумент логарифмической функции должен быть строго положителен: . Переписав это неравенство в виде  мы убеждаемся, что границей искомой области служит окружность  (с центром в начале координат, радиуса 3).

Окружность разбивает плоскость хОу на две части; несложно убедиться, что неравенству  отвечает внутренняя область, то есть круг с центром в начале координат радиуса 3 (без границы, т.к. неравенство строгое).

Вопросы и задачи

п1. Найти и показать на чертеже область определения функции

  а)  б)  в)

п2. Для данной функции найти: частные производные первого порядка; первый дифференциал; градиент; дивергенцию

 а)  ; б)

Задачи к практическому занятию

Найти частные производные второго порядка для данной функции; убедиться, что :

Уравнения с разделяющимися переменными и однородные уравнения

Уравнения в полных дифференциалах


Вычисление двойного интеграла в полярных координатах