Алгебра матриц Аналитическая геометрия Неопределенный интеграл Изменить порядок интегрирования в интеграле Функции нескольких переменных Линейные уравнения Производные ФНП высших порядков Функции комплексной переменной

Решение примерного варианта контрольной работы по математике

ЗАДАНИЕ 12. Вычислить массу дуги кривой () при заданной плотности :

1)  

2) (.

3) (.

РЕШЕНИЕ.

1) Рассматривается случай параметрического задания кривой (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле

.

Найдем  ,

, так как для  функция .  Вычислим массу  с помощью определенного интеграла:

=

Ответ. =256.

2) Кривая () задана явным выражением. В случае явного задания кривой криволинейный интеграл первого рода сводится к определенному следующим образом  :

.

Найдем  .

Для массы  получим:

.

Ответ. .

3) Наконец, рассмотрим случай кривой, заданной в полярной системе координат, в этом случае масса  может быть определена по формуле

.

Вычислим

Для определения массы кривой получим определенный интеграл

.

Ответ. =.


Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

ЗАДАНИЕ 20. Убедиться в потенциальности поля


Вычисление двойного интеграла в полярных координатах