Алгебра матриц Аналитическая геометрия Неопределенный интеграл Изменить порядок интегрирования в интеграле Функции нескольких переменных Линейные уравнения Производные ФНП высших порядков Функции комплексной переменной

Решение примерного варианта контрольной работы по математике

Аналитическая геометрия на плоскости

Задания для подготовки к практическому занятию

Прочитайте §6 лекций и предложенные примеры. Ответьте письменно на вопросы и решите задачи.

Примеры.

Даны точки: А(1;0), В(3;1), С(-2;5)

1. Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координат

Решение: Составим уравнение прямой с начальной точкой А(1;0) и направляющим вектором :

(АВ): .

Приведем уравнение к общему виду:

(АВ):  x-2y-1=0

Проверка:

точка А принадлежит прямой (АВ), т.е. ее координаты удовлетворяют уравнению: 1-2×0-1=0 – верно. точка В принадлежит прямой (АВ), т.е. ее координаты удовлетворяют уравнению: 3-2×1-1=0 – верно.

Найдем точку Е пересечения прямой (АВ) с осью Ох. Имеем:, то есть yE=0. Поскольку также, координаты искомой точки должны удовлетворять уравнению прямой (АВ), то есть хЕ-2yE-1=0. Подставляя yE=0, получаем xE=1. Таким образом, .

Аналогично находим .

2. Написать уравнение прямой l1, проходящей через точку C параллельно прямой (АВ).

Решение: Уравнения параллельных прямых отличаются только свободным членом, то есть уравнение прямой будет иметь вид

l1: x-2y+c=0,

где с – некоторое число, которое мы можем найти из второго условия:

, следовательно, координаты точки С должны удовлетворять уравнению прямой l1:

-2-2×5+с=0, откуда получаем с=12.

Таким образом, окончательно имеем искомое уравнение

l1: x-2y+12=0.

3. Написать уравнение прямой l2, проходящей через точку C перпендикулярно прямой (АВ).

Решение: Для того, чтобы написать уравнение прямой, перпендикулярной данной, достаточно поменять местами коэффициенты при х и у, изменив у одного из них знак на противоположный:

.

Коэффициент с найдем из условия , откуда с=-1.

Таким образом, окончательно имеем искомое уравнение:

l2: 2x+y-1=0.

4. Найти проекцию Р точки С на прямую (АВ)

Решение: Проекция точки С на прямую (АВ)- это основание перпендикуляра,  опущенного из точки С на прямую (АВ), то есть точка пересечения прямых (АВ) и l2: . Поскольку искомая точка принадлежит обеим прямым, следовательно, ее координаты должны удовлетворять уравнениям этих прямых. Следовательно, требуется решить систему уравнений

Решением этой системы является пара чисел x=0,6; y=-0,2. Таким образом, искомая точка Р(0,6; -0,2).

5. Написать уравнение прямой l3, проходящей через точку С под углом 45о к положительному направлению оси Ох и найти угол между прямыми (АВ) и l3

Решение: Используем уравнение прямой, проходящей через точку С(-2;5) с угловым коэффициентом k=tg45o=1:

l3: y-5=1×(x-(-2)), или

l3: х- y+7=0.

Далее, угол между прямыми равен острому углу между векторами, перпендикулярными этим прямым (или смежному если найденный угол тупой). Одним из векторов, перпендикулярных прямой, является вектор с координатами, равными коэффициентам при неизвестных в уравнении этой прямой.

Таким образом, имеем два вектора:  и . Найдем косинус угла между векторами при помощи скалярного произведения:

.

Полученное число положительно, следовательно, угол острый и окончательно имеем

.

Примеры.

Даны точки: А(1;0), В(3;1), С(-2;5)

1. Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координат

Решение: Составим уравнение прямой с начальной точкой А(1;0) и направляющим вектором :

(АВ): .

Приведем уравнение к общему виду:

(АВ):  x-2y-1=0

Предел последовательности Задания для подготовки к практическому занятию

Предел функции

Примеры. Вычислить производные функций:

Определение производной функции, ее геометрический и физический смысл

ЗАДАНИЕ 14. Исходя из определения производной, найти f ¢(0) для f(x)=

 

Другой подход к решению задачи  использование логарифмической производной.

ЗАДАНИЕ 16. Составить уравнения касательной и нормали к кривой в данной точке

ЗАДАНИЯ 19-20. Вычислить пределы с помощью правила Лопиталя


Вычисление двойного интеграла в полярных координатах