Туризм, путешествия: Бронирование отелей

Туризм, путешествия: Бронирование отелей

 

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач

Закажите реферат

Закажите реферат

Рефераты, контрольные, курсовые и дипломные работы на заказ
Алгебра матриц Аналитическая геометрия Неопределенный интеграл Изменить порядок интегрирования в интеграле Функции нескольких переменных Линейные уравнения Производные ФНП высших порядков Функции комплексной переменной

Решение примерного варианта контрольной работы по математике

Алгебра матриц

В этой главе, прежде всего, строится матричное исчисление. На множестве матриц, определяемых как таблицы вещественных чисел, вводятся операции (сложения, умножения, умножения на число, транспонирования и обращения) и изучаются свойства этих операций. Выясняется, что наряду со свойствами операций, наследуемыми матрицами у вещественных чисел, у них появляются и новые свойства, которыми вещественные числа не обладают. Например, умножение матриц оказывается некоммутативным.

После этого обсуждается проблема разложения матрицы на простейшие. Оказывается, что любую матрицу единственным образом можно представить в виде суммы матриц, каждая из которых обладает только одним ненулевым элементом. Представление матрицы в виде произведения простейших является более сложным и нуждается в построении специального аппарата элементарных матриц, оправдывающего себя в последующих разделах курса.

В последней части первой главы изучаются простейшие матричные уравнения. Двойные интегралы вычисляются, как правило, с помощью повторных интегралов. Однако переход от двойных к повторным интегралам возможен не для произвольной области интегрирования R, а для областей определенного типа. Введем понятия областей интегрирования типа I и II. Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания

Лекция I.

План

Матрицы. Терминология

Принцип равенства

Транспонирование матриц

Сложение матриц

Умножение матрицы на число

Матрицы. Терминология

Прямоугольная таблица действительных чисел

  (1.1)

называется действительной матрицей. Числа , образующие матрицу, называются её элементами. Здесь . Для обозначения матриц будем применять заглавные буквы латинского алфавита A, B, C, ..., X, Y, Z, а для обозначения их элементов – греческие буквы  и т.д. с индексами  и . При этом первый слева индекс (индекс ) указывает номер строки, а второй индекс (индекс ) – на номер столбца матрицы, на пересечении которых расположен элемент . Наряду с обозначением (1.1) в литературе часто встречаются сокращенные обозначения

или просто . Эти обозначения мы также будем использовать в дальнейшем.

Введем специальные обозначения для строк и столбцов матрицы :

а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если  - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,

,

называется матрицей-строкой порядка .

Матрица , имеющая только один столбец,

,

называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка  в дальнейшем будем обозначать через .

Элементы  матрицы  образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,

,

матрица  называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,

называется нижне-треугольной (верхне-треугольной) матрицей.

Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения  и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Сложение матриц Операция сложения определена лишь для матриц одинакового размера.

Умножение матрицы на число

Матричные уравнения

Скалярное умножение арифметических векторов

Умножение матриц

Рассмотрим основные свойства умножения матриц

Реакция произведения матриц на операцию транспонирования

 Основные типы алгебраических структур

Элементарные преобразования над матрицами и элементарные матрицы

Матрицы и определители

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

Примеры. Даны точки: А(1;0), В(3;1), С(2;5) Найти координаты векторов  .


Вычисление двойного интеграла в полярных координатах