Вычислить массу дуги кривой Интервалы выпуклости и вогнутости, точки перегиба графика Основные типы алгебраических структур Определенный интеграл Тройной интеграл в цилиндрических и сферических координатах Вычислить работу силы

Решение примерного варианта контрольной работы по математике

Тройной интеграл в цилиндрических и сферических координатах

Цилиндрические координаты точки в пространстве - это ее полярные координаты в XOY и координата Z.

Связь между декартовыми и цилиндрическими координатами:

Перевод тройного интеграла к цилиндрическим координатам и сведение к повторному трехкратному интегралу осуществляется следующим образом: Приведем примеры использования функций в области экономики

Пример 12

Найти момент инерции по оси z площади поверхности, которая лежит ниже параболоида , внутри цилиндра , над плоскостью Оxy и имеет формулу распределения плотности .

Решение

По формуле момента инерции получим:

Уравнение области внутри цилиндра переведем в цилиндрические координаты. Получаем:

Пример 13

Вычислить , где

Решение

Теорема 1 о переходе к сферическим координатам

Пусть - непрерывно дифференцируемые и пусть - непрерывная на функция. Тогда

Связь сферических и декартовых координат

Формула перевода тройного интеграла к сферическим координатам

Применение тройных интегралов. Масса неоднородного тела

Декартовы координаты. Пусть дан тройной интеграл от функции

Установим теперь правило для вычисления   такого интеграла.. Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной

Вычислим тройной интеграл Цилиндрические координаты

Сферические координаты

Пример. Найдем центр тяжести однородного полушара

Перейдём к вычислению моментов инерции тела относительно координатных осей.

 


Объём цилиндрического тела. Двойной интеграл