Лабораторные работы по электротехнике Изучение работы полупроводниковых выпрямителей Изучение кенотронного выпрямителя Изучение колебательного контура Изучение цепи переменного тока Постоянный электрический ток

Лабораторные работы по электротехнике. Конспект курса лекций

Лабораторная работа 233

Изучение цепи переменного тока

  Если в электрической цепи действует периодически изменяющаяся электродвижущая сила, то в ней возникают колебания тока и напряжения. Амплитуды и фазы этих колебаний на разных элементах цепи – сопро-тивлении (R), индуктивности (L) и емкости (C) - будут разными. Мы будем изучать цепи переменного тока с сосредоточенными параметрами, в которых R, L и C сосредоточены на отдельных участках цепи в виде резисторов, конденсаторов и катушек индуктивности (Рис. 1), в отличие от цепей с распределенными параметрами, в которых они распределены по всей длине цепи. Кроме того будем считать, что ток в цепи изменяется по гармоническому (синусоидальному) закону .

 


Резистор Конденсатор Катушка индуктивности

Расчет электрических цепей постоянного и переменного тока ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

  Рис. 1.

При изучении гармонических колебаний широко пользуются методом векторных диаграмм. Суть этого метода состоит в том, что любая физическая величина (x), изменяющаяся по гармоническому закону x = x0cos(wt+j0), может быть представлена как проекция на заданную ось вектора, вращающегося против часовой стрелки. Длина вращающегося вектора равна амплитудному значению x0. Угол, образу-емый этим вектором с заданной осью в начальный момент времени равен началь-ной  фазе колебания (j0) (Рис. 2).

Сопротивление в цепи переменного тока (R-цепь)

 При прохождении переменного тока

 (1)

через резистор, обладающий сопротивлением R, на резисторе появляется переменное напряжение, совпадающее по фазе с колебаниями тока

. (2)

 Сопротивление резистора  не зависит от частоты w

 На рисунке 3а представлена векторная диаграмма для рассматриваемой цепи, а на рисунке 3б - графики зависимостей IR и UR от времени. Так как фазы колебаний тока и напряжения одинаковы, направления соответ-ствующих векторов на векторной диаграмме совпадают.

 


 

  Рис. 3а Рис. 3б

Индуктивность в цепи переменного тока (L-цепь)

 Если через катушку индуктивности идет переменный ток

, (3)

то напряжение на ее выводах будет равно по величине, но противоположно по знаку ЭДС самоиндукции, то есть

 (4)

 Сравнение выражений (3) и (4) показывает, что колебания напряжения на катушке индуктивности опережают по фазе на p/2 колебания тока в ней. На векторной диаграмме (рис. 4а) вектор, изображающий колебания напря-жения, повернут относительно вектора тока на угол p/2 в положительном направлении (против часовой стрелки). На рис. 4б это отражено в сдвиге кривой напряжения относительно кривой тока влево на четверть периода.

 


 

 


 Рис. 4а Рис. 4б

Сопротивление катушки индуктивности, определяемое как отношение амплитудных значений напряжения и тока линейно растет с увеличением

частоты  . (5)

Емкость в цепи переменного тока (C-цепь)

 Если в цепи, содержащей конденсатор, идет переменный ток

, (6)

то происходит периодическая перезарядка конденсатора. По определению I = dq/dt, следовательно

. (7)

При этом напряжение на конденсаторе

. (8)

 Сравнение (6) и (8) показывает, что колебания напряжения на конден-саторе отстают по фазе на p/2 от колебаний тока (см. рис. 5а и 5б).

 Сопротивление конденсатора уменьшается при увеличении частоты.

 (9)

 

RLC-цепь Анализ цепи, состоящей из последовательно соединенных резистора, катушки индуктивности и конденсатора, проведем с помощью векторной диаграммы.

Описание экспериментальной установки

 


Изучение электронного осциллографа