Туризм, путешествия: Бронирование отелей

Туризм, путешествия: Бронирование отелей

 

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач

Закажите реферат

Закажите реферат

Рефераты, контрольные, курсовые и дипломные работы на заказ
Метод сечений Удлинение стержня и закон Гука Моменты инерции сечения. Кручение бруса с круглым поперечным сечением Кручение тонкостенного бруса Значение изгибающего момента Касательные напряжения при поперечном изгибе

Примеры решения задач по курсу сопротивление материалов

Кручение тонкостенного бруса

 В машиностроении, авиастроении и вообще в технике широко применяются тонкостенные стержни с замкнутыми (рис.4.7,а) и открытыми профилями (рис.4.7,б) поперечных сечений. Поэтому расчеты на кручение таких тонкостенных стержней имеет большое практическое значение.

Рис.4.7

 Характерной геометрической особенностью тонкостенных стержней является то, что их толщина существенно (на порядок и более) меньше других геометрических размеров (длиной срединной линии контура поперечного сечения и длины стержня).

 Характер распределения напряжений по толщине тонкостенного стержня открытого профиля близок к равномерному (рис.4.7,б), а замкнутого профиля меняется по линейному закону, как это показано на рис.4.7,а. Откуда следует, что напряжения в поперечных сечениях открытого профиля практически не изменятся, если профиль сечения распрямить. Иначе говоря, напряжения в криволинейном открытом профиле будут примерно такими же, как и в прямом.

Расчеты на прочность Вследствие наклонного расположения зубьев в косозубом зацеплении одновременно находится несколько пар зубьев, что уменьшает нагрузку на один зуб и снижает динамические нагрузки. Расчет на прочность косозубых передач ведут по формулам эквивалентных прямозубых передач с введением в них поправочных коэффициентов, учитывающих особенности работы. По условиям прочности габариты косозубых передач получаются меньше, чем прямозубых.

  Обращаясь к формулам (4.14), (4.16) и при предельном переходе , получим:

;, (4.17)

где d-толщина профиля; s-длина контура профиля; l-длина стержня.

 В случае, если тонкостенный незамкнутый профиль является составным (рис.4.8) и не может быть развернут в вытянутый прямоугольник, воспользовавшись почленной аналогией, легко определить выражения напряжений на i-ом произвольном участке:

, (4.18)

где MK(i)-доля крутящего момента, соответствующего i-му участку:

,

где j-угловое перемещение, единое для всех участков:

. (4.19)

 Изложенный подход к определению напряжений является приближенным, так как он не позволяет определить напряжения в зонах сопряжения элементов поперечного сечения профиля, которые являются зонами концентрации напряжений.

 Рис.4.8 Рис.4.9

Далее рассмотрим брус, имеющий поперечное сечение в форме замкнутого тонкостенного профиля (рис.4.9).

Пример расчета (задача 5) Пусть задан тонкостенный стержень (рис.4.10,а) при действии самоуравновешивающих крутящих моментов на двух противоположных концах, требуется: 1.Определить выражения максимальных напряжений и углов закручивания в случаях, когда стержень имеет открытый (рис.4.10,б) и замкнутый (рис.4.10,в) профиль;

Изгиб Внутренние усилия в поперечных сечениях бруса.

Для определения внутренних силовых факторов-изгибающего момента М(z) и поперечной силы Q(z) как функций от продольной координаты z, воспользуемся методом сечений.

Основные дифференциальные соотношения теории изгиба Пусть брус нагружен произвольным образом распределенной нагрузкой q=f(z)

Напряжения при чистом изгибе Рассмотрим наиболее простой случай изгиба, называемый чистым изгибом.

Выразим момент внутренних сил относительно нейтральной оси Mx через s. Очевидно, что . (5.8).


Определение прогиба и напряжений